skip to main content


Search for: All records

Creators/Authors contains: "Leisnham, Paul T."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Laboratory and field-based studies of the invasive mosquito Aedes albopictus demonstrate its competency to transmit over twenty different pathogens linked to a broad range of vertebrate hosts. The vectorial capacity of Ae. albopictus to transmit these pathogens remains unclear, partly due to knowledge gaps regarding its feeding behavior. Blood meal analyses from field-captured specimens have shown vastly different feeding patterns, with a wide range of anthropophagy (human feeding) and host diversity. To address this knowledge gap, we asked whether differences in innate host preference may drive observed variation in Ae. albopictus feeding patterns in nature. Low generation colonies (F2–F4) were established with field-collected mosquitoes from three populations with high reported anthropophagy (Thailand, Cameroon, and Florida, USA) and three populations in the United States with low reported anthropophagy (New York, Maryland, and Virginia). The preference of these Ae. albopictus colonies for human versus non-human animal odor was assessed in a dual-port olfactometer along with control Ae. aegypti colonies already known to show divergent behavior in this assay. All Ae. albopictus colonies were less likely (p < 0.05) to choose the human-baited port than the anthropophilic Ae. aegypti control, instead behaving similarly to zoophilic Ae. aegypti . Our results suggest that variation in reported Ae. albopictus feeding patterns are not driven by differences in innate host preference, but may result from differences in host availability. This work is the first to compare Ae. albopictus and Ae. aegypti host preference directly and provides insight into differential vectorial capacity and human feeding risk. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  2. Nonpoint source (NPS) pollution is a severe problem in the U.S. and worldwide. Best management practices (BMPs) have been widely used to control stormwater and reduce NPS pollution. Previous research has shown that socio-economic factors affect households’ adoption of BMPs, but few studies have quantitatively analyzed the spatio-temporal dynamics of household BMP adoption under different socio-economic conditions. In this paper, diverse regression approaches (linear, LASSO, support vector, random forest) were used on the ten-year data of household BMP adoption in socio-economically diverse areas of Washington, D.C., to model BMP adoption behaviors. The model with the best performance (random forest regression, R2 = 0.67, PBIAS = 7.2) was used to simulate spatio-temporal patterns of household BMP adoption in two nearby watersheds (Watts Branch watershed between Washington, D.C., and Maryland; Watershed 263 in Baltimore), each of which are characterized by different socio-economic (population density, median household income, renter rate, average area per household, etc.) and physical attributes (total area, percentage of canopy in residential area, average distance to nearest BMPs, etc.). The BMP adoption rate was considerably higher at the Watts Branch watershed (14 BMPs per 1000 housing units) than at Watershed 263 (4 BMPs per 1000 housing units) due to distinct differences in the watershed characteristics (lower renter rate and poverty rate; higher median household income, education level, and canopy rate in residential areas). This research shows that adoption behavior tends to cluster in urban areas across socio-economic boundaries and that targeted, community-specific social interventions are needed to reach the NPS control goal. 
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  3. Nonpoint source (NPS) pollution is a pressing issue worldwide, especially in the Chesapeake Bay, where sediment, nitrogen (N), and phosphorus (P) are the most critical water quality concerns. Despite significant efforts by federal, state, and local governments, the improvement in water quality has been limited. Investigating the spatial distribution of NPS hotspots can help understand NPS pollutant output and guide control measures. We hypothesize that as land cover changes from natural (e.g., forestland) and agricultural to suburban and ultra-urban, the distribution of NPS pollution source areas becomes increasingly spatially uniform. To test this hypothesis, we analyzed three real watersheds with varying land cover (Greensboro watershed for agriculture, Watts Branch watershed for suburban, and Watershed 263 for ultra-urban) and three synthetic watersheds developed based on the Watts Branch watershed, which ranged from forested and agricultural to ultra-urban but had the same soil, slope, and weather conditions. The Soil and Water Assessment Tool (SWAT) was selected as a phenomenological model for the analysis, and SWAT-CUP was used for model calibration and validation. The hydrologic responses of the three real and synthetic watersheds were simulated over ten years (1993–2002 or 2002–2011), and calibration and validation results indicated that SWAT could properly predict the export of runoff and three target NPS pollution constituents (sediment, total nitrogen, and total phosphorus). The results showed that the distribution of NPS pollutant outputs becomes increasingly uniform as land cover changes from agriculture to ultra-urban across watersheds. This research suggests that the spatial distribution of NPS pollution source areas is a function of the major land cover category of study watersheds, and control strategies should be adapted accordingly. If NPS pollution is distributed unevenly across a watershed, hotspot areas output a disproportionate amount of pollution and require more targeted and intensive control measures. Conversely, if the distribution of NPS pollution is more uniform across a watershed, the control strategies need to be more widespread and encompass a larger area. 
    more » « less
  4. The Asian tiger mosquito ( Aedes albopictus ) arrived in the USA in the 1980’s and rapidly spread throughout eastern USA within a decade. The predicted northern edge of its overwintering distribution on the East Coast of the USA roughly falls across New York, Connecticut, and Massachusetts, where the species has been recorded as early as 2000. It is unclear whether Ae. albopictus populations have become established and survive the cold winters in these areas or are recolonized every year. We genotyped and analyzed populations of Ae. albopictus from the northeast USA using 15 microsatellite markers and compared them with other populations across the country and to representatives of the major global genetic clades to investigate their connectivity and stability. Founder effects or bottlenecks were rare at the northern range of the Ae. albopictus distribution in the northeastern USA, with populations displaying high levels of genetic diversity and connectivity along the East Coast. There is no evidence of population turnover in Connecticut during the course of three consecutive years, with consistent genetic structure throughout this period. Overall, these results support the presence of established populations of Ae. albopictus in New York, Connecticut, and Massachusetts, successfully overwintering and migrating in large numbers. Given the stability and interconnectedness of these populations, Ae. albopictus has the potential to continue to proliferate and expand its range northward under mean warming conditions of climate change. Efforts to control Ae. albopictus in these areas should thus focus on vector suppression rather than eradication strategies, as local populations have become firmly established and are expected to reemerge every summer. 
    more » « less
  5. null (Ed.)
    Condition-specific competition, when environmental conditions alter the outcome of competition, can foster the persistence of resident species after the invasion of a competitively superior invader. We test whether condition-specific competition can facilitate the areawide persistence of the resident and principal West Nile virus vector mosquito Culex pipiens with the competitively superior invasive Aedes albopictus in water from different urban container habitats. (2) Methods: We tested the effects of manipulated numbers of A. albopictus on C. pipiens’ survival and development in water collected from common functional and discarded containers in Baltimore, MD, USA. The experiment was conducted with typical numbers of larvae found in field surveys of C. pipiens and A. albopictus and container water quality. (3) Results: We found increased densities of A. albopictus negatively affected the survivorship and development of C. pipiens in water from discarded containers but had little effect in water from functional containers. This finding was driven by water from trash cans, which allowed consistently higher C. pipiens’ survival and development and had greater mean ammonia and nitrate concentrations that can promote microbial food than other container types. (4) Conclusions: These results suggest that the contents of different urban containers alter the effects of invasive A. albopictus competition on resident C. pipiens, that trash cans, in particular, facilitate the persistence of C. pipiens, and that there could be implications for West Nile virus risk as a result. 
    more » « less
  6. null (Ed.)
  7. Andreadis, Theodore (Ed.)
    Abstract The temperate United States has experienced increasing incidence of mosquito-borne diseases. Recent studies conducted in Baltimore, MD have demonstrated a negative relationship between abundances of Aedes albopictus (Skuse) and Culex mosquitoes and mean neighborhood income level, but have not looked at the presence of pathogens. Mosquitoes collected from five socioeconomically variable neighborhoods were tested for infection by West Nile, chikungunya, and Zika viruses in 2015 and 2016, and again from four of the neighborhoods in 2017. Minimum infection rates of pooled samples were compared among neighborhoods for each year, as well as among individual blocks in 2017. West Nile virus was detected in both Ae. albopictus and Culex pools from all neighborhoods sampled in 2015 and 2017. No infected pools were detected in any year for chikungunya or Zika viruses, and none of the target viruses were detected in 2016. Infection rates were consistently higher for Culex than for Ae. albopictus. Minimum infection rate was negatively associated with mean neighborhood income for both species in 2015. Although earlier work has shown a positive association between block-level abandonment and mosquito abundance, no association was detected in this study. Still, we demonstrate that viral infection in mosquito pools can differ substantially across adjacent urban neighborhoods that vary by income. Though trap security and accessibility often inform city sampling locations, detecting and managing arboviral risk requires surveillance across neighborhoods that vary in socioeconomics, including lower income areas that may be less accessible and secure but have higher infection rates. 
    more » « less
  8. null (Ed.)
    Species interactions that influence the performance of the exotic mosquito Culex pipiens can have important effects on the transmission risk of West Nile virus (WNV). Invasive plants that alter the vegetation communities of ephemeral ground pools may facilitate or resist the spread of C. pipiens (L.) by altering allochthonous inputs of detritus in those pools. To test this hypothesis, we combined field surveys of roadside stormwater ditches with a laboratory microcosm experiment to examine relationships between C. pipiens performance and water quality in systems containing detritus from invasive Phragmites australis (Cav.) Trin. Ex Steud., introduced Schedonorus arundinaceus (Schreb.) Dumort., or native Juncus effusus L. or Typha latifolia L. In ditches, C. pipiens abundance was unrelated to detritus species but female C. pipiens were significantly larger from ditches with S. arundinaceus and smaller with J. effusus. Larger and smaller C. pipiens were also produced in microcosms provisioned with S. arundinaceus and J. effusus, respectively, yet the per capita rate of population of change did not vary. Larger females from habitats with S. arundinaceus were likely caused by faster decay rates of S. arundinaceus and resultant increases in microbial food, but lower survival as a result of fouling and higher tannin-lignin concentrations resulted in little changes to overall population performance. Larger female mosquitoes have been shown to have greater potential for transmitting arboviruses. Our findings suggest that changed community-level interactions from plant invasions in urban ephemeral ground pools can affect the fitness of C. pipiens and possibly increase WNV risk. 
    more » « less
  9. Abstract Mosquitoes pose an increasing risk in urban landscapes, where spatial heterogeneity in juvenile habitat can influence fine-scale differences in mosquito density and biting activity. We examine how differences in juvenile mosquito habitat along a spectrum of urban infrastructure abandonment can influence the adult body size of the invasive tiger mosquito, Aedes albopictus (Skuse) (Diptera: Culicidae). Adult Ae. albopictus were collected across 3 yr (2015–2017) from residential blocks in Baltimore, MD, that varied in abandonment level, defined by the proportion of houses with boarded-up doors. We show that female Ae. albopictus collected from sites with higher abandonment were significantly larger than those collected from higher income, low abandonment blocks. Heterogeneity in mosquito body size, including wing length, has been shown to reflect differences in important traits, including longevity and vector competence. The present work demonstrates that heterogeneity in female size may reflect juvenile habitat variability across the spatial scales most relevant to adult Aedes dispersal and human exposure risk in urban landscapes. Previous work has shown that failure to manage abandonment and waste issues in impoverished neighborhoods supports greater mosquito production, and this study suggests that mosquitoes in these same neighborhoods could live longer, produce more eggs, and have different vector potential. 
    more » « less